Natural similarity measures between position frequency matrices with an application to clustering

نویسندگان

  • Utz J. Pape
  • Sven Rahmann
  • Martin Vingron
چکیده

MOTIVATION Transcription factors (TFs) play a key role in gene regulation by binding to target sequences. In silico prediction of potential binding of a TF to a binding site is a well-studied problem in computational biology. The binding sites for one TF are represented by a position frequency matrix (PFM). The discovery of new PFMs requires the comparison to known PFMs to avoid redundancies. In general, two PFMs are similar if they occur at overlapping positions under a null model. Still, most existing methods compute similarity according to probabilistic distances of the PFMs. Here we propose a natural similarity measure based on the asymptotic covariance between the number of PFM hits incorporating both strands. Furthermore, we introduce a second measure based on the same idea to cluster a set of the Jaspar PFMs. RESULTS We show that the asymptotic covariance can be efficiently computed by a two dimensional convolution of the score distributions. The asymptotic covariance approach shows strong correlation with simulated data. It outperforms three alternative methods. The Jaspar clustering yields distinct groups of TFs of the same class. Furthermore, a representative PFM is given for each class. In contrast to most other clustering methods, PFMs with low similarity automatically remain singletons. AVAILABILITY A website to compute the similarity and to perform clustering, the source code and Supplementary Material are available at http://mosta.molgen.mpg.de.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Empirical Comparison of Distance Measures for Multivariate Time Series Clustering

Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...

متن کامل

New distance and similarity measures for hesitant fuzzy soft sets

The hesitant fuzzy soft set (HFSS), as a combination of hesitant fuzzy and soft sets, is regarded as a useful tool for dealing with the uncertainty and ambiguity of real-world problems. In HFSSs, each element is defined in terms of several parameters with arbitrary membership degrees. In addition, distance and similarity measures are considered as the important tools in different areas such as ...

متن کامل

ارائه یک الگوریتم خوشه بندی برای داده های دسته ای با ترکیب معیارها

Clustering is one of the main techniques in data mining. Clustering is a process that classifies data set into groups. In clustering, the data in a cluster are the closest to each other and the data in two different clusters have the most difference. Clustering algorithms are divided into two categories according to the type of data: Clustering algorithms for numerical data and clustering algor...

متن کامل

An improved opposition-based Crow Search Algorithm for Data Clustering

Data clustering is an ideal way of working with a huge amount of data and looking for a structure in the dataset. In other words, clustering is the classification of the same data; the similarity among the data in a cluster is maximum and the similarity among the data in the different clusters is minimal. The innovation of this paper is a clustering method based on the Crow Search Algorithm (CS...

متن کامل

A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach

In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 24 3  شماره 

صفحات  -

تاریخ انتشار 2008